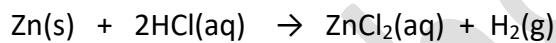


Learn With GS Live online Classes For Std. 7 to10 (Mathematics and Science) Contact- 6299610601

Class – 10 / Science/ Notes Of Ch – 01 Chemical Reaction and Equation

Chemical Reaction: When two or more substances react and form some new substance, it is called a chemical reaction.

Characteristics of Chemical Reactions


When a chemical reaction takes place, it often shows **observable changes** that indicate a **new substance** (product) has been formed from the original substances (reactants). These observable features are called **characteristics of chemical reactions**.

Below are the **five important characteristics**:

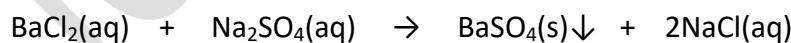
(i) Evolution of a Gas

When a gas is released during a chemical reaction, it is observed as bubbles or effervescence.

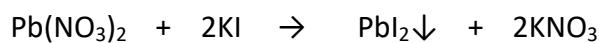
Examples: Zinc + Dilute HCl \rightarrow Zinc chloride + Hydrogen gas

Hydrogen gas bubbles out.

Sodium bicarbonate + Acetic acid \rightarrow Sodium acetate + Carbon dioxide + Water

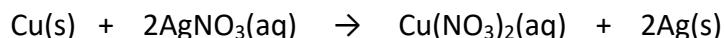


Carbon dioxide is evolved.

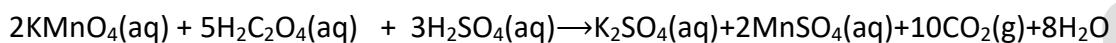

Formation of a Precipitate : When two aqueous solutions react and form an **insoluble solid**, this solid is called a **precipitate**.

Examples:

Barium chloride + Sodium sulphate \rightarrow Barium sulphate (white precipitate) + Sodium chloride



Lead nitrate + Potassium iodide \rightarrow Lead iodide (yellow precipitate) + Potassium nitrate



Change in Colour

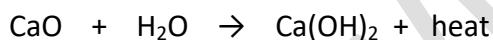
A noticeable change in **colour** of the substances involved indicates a chemical reaction.

Examples:**1. Copper + Silver nitrate \rightarrow Copper nitrate (blue) + Silver (grey)**

Colourless solution turns blue, and silver gets deposited.

2. Potassium permanganate (purple) is decolourised by oxalic acid in presence of dilute H_2SO_4

Purple solution becomes colourless.


Change in Temperature

Chemical reactions often involve **release** or **absorption** of heat.

- **Exothermic Reaction:** Heat is **released**, temperature **increases**.
- **Endothermic Reaction:** Heat is **absorbed**, temperature **decreases**.

Examples:**1. Exothermic:**

Quick lime + Water \rightarrow Slaked lime + Heat

The container becomes hot.

2. Endothermic:

Barium hydroxide + Ammonium chloride \rightarrow Barium chloride + Ammonia + Water

Temperature falls; the container becomes cold.

Change in State

During chemical reactions, the **physical state** of substances (solid, liquid, gas) may change.

Examples:**Burning of wax**

Wax (solid) melts to liquid and then burns to form **CO_2 (gas)** and **water vapour**.

Summary Table

Characteristic	Description	Example Reaction
Evolution of a gas	Gas bubbles or effervescence seen	$\text{Zn} + \text{HCl} \rightarrow \text{H}_2$
Precipitate formation	Insoluble solid forms from solution	$\text{Pb}(\text{NO}_3)_2 + \text{KI}$
Change in colour	Visible colour change in solution/substance	$\text{Cu} + \text{AgNO}_3$
Change in temperature	Heat is released or absorbed	$\text{CaO} + \text{H}_2\text{O}$
Change in state	Physical state of reactants/products change	Burning wax

Let us see few activities related to chemical reaction:

When **magnesium ribbon burns in air**, it undergoes a **chemical reaction** with oxygen to form **magnesium oxide**.

When you ignite a magnesium ribbon:

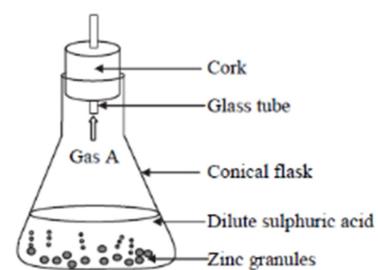
- It **burns with a bright white flame**.
- Produces **white ash of magnesium oxide (MgO)**.
- The reaction is **highly exothermic** (releases heat and light).

Word Equation: **Magnesium + Oxygen \rightarrow Magnesium oxide**

Chemical Equation: $2\text{Mg}(\text{s}) + \text{O}_2(\text{g}) \rightarrow 2\text{MgO}(\text{s})$

The magnesium ribbon we bring has a layer of carbonate on it so before burning it needs to be cleaned with sandpaper.

Products : magnesium oxide (white color_MgO)


Identification property of reaction: white dazzling flame

2. Reacting zinc granules with dilute sulphuric acid

Chemical reaction : $\text{H}_2\text{SO}_4 + \text{Zn} \rightarrow \text{ZnSO}_4 + \text{H}_2$

Products : zinc sulphate and hydrogen gas

Identification: beaker becomes hot and hydrogen gas is produced which makes match stick burn with pale blue flame and popping sound.

3. Reacting barium iodide with lead chloride

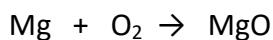
Chemical reaction : $\text{BaI}_2 + \text{PbCl}_2 \rightarrow \text{BaCl}_2 + \text{Pb}$

Products : barium chloride white colour and yellow colour.

What is a Chemical Equation?

A **chemical equation** is a **symbolic representation** of a chemical reaction using chemical formulas of **reactants** and **products**.

It shows:

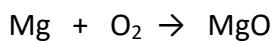

- **Reactants:** Substances that take part in the reaction (**left side**)
- **Products:** Substances formed after the reaction (**right side**)
- An arrow (\rightarrow) indicates the direction of the reaction

Example:

Word Equation:

Magnesium + Oxygen \rightarrow Magnesium oxide

Chemical Equation (Unbalanced):



Unbalanced Chemical Equation

An **unbalanced chemical equation** is one in which the **number of atoms** of each element on the **reactant side** is not equal to the number of atoms on the **product side**.

► It violates the **Law of Conservation of Mass**.

Example:

(This is **unbalanced** because there are 2 oxygen atoms on the left but only 1 on the right.)

Balanced Chemical Equation

A **balanced chemical equation** is one in which the **number of atoms of each element is equal** on both sides of the equation.

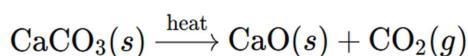
► It follows the **Law of Conservation of Mass**.

Example:

Why Balance Chemical Equations?

- To obey the **Law of Conservation of Mass**
- To show a **correct and realistic reaction**
- Important for **calculations in chemistry** (stoichiometry)

To Make Equations More Informative

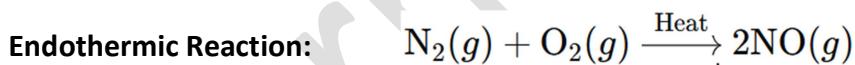

A **chemical equation** becomes more meaningful and helpful when it includes additional details such as **physical states**, **heat changes**, and **conditions required** for the reaction. These enhanced equations are called "information-giving" or "more informative" equations.

1. Indicating the Physical States of Reactants and Products

The physical state of each substance involved in the reaction is shown using **symbols** in brackets:

- (s) → solid
- (l) → liquid
- (g) → gas
- (aq) → aqueous (substance dissolved in water)

Example:

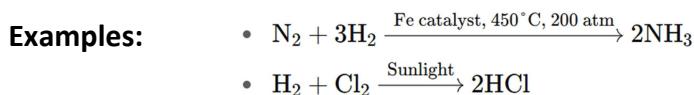

2. Indicating Heat Changes in the Reaction

Chemical reactions are often accompanied by heat changes:

- If **heat is released**, it is an **exothermic reaction** (temperature increases).
- If **heat is absorbed**, it is an **endothermic reaction** (temperature drops).

This can be indicated by writing **Δ (delta)** above the arrow or mentioning heat explicitly.

Examples:



Indicating the Conditions for the Reaction

Some chemical reactions need specific **conditions** to proceed, such as:

- **Temperature**
- **Pressure**
- **Catalysts**
- **Light (photochemical reactions)**

These are written **above or below the arrow** in the chemical equation.

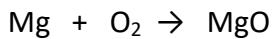
Note: By adding details about **physical states**, **heat changes**, and **reaction conditions**, a chemical equation becomes more **descriptive**, **informative**, and **scientifically complete**.

Types of chemical reactions

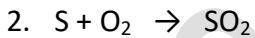
1. **Combination Reaction**
2. **Decomposition Reaction**
3. **Displacement Reaction**
4. **Double Displacement Reaction**
5. **Redox Reaction** (Oxidation and Reduction)
6. **Exothermic Reaction**
7. **Endothermic Reaction**

1. Combination Reaction

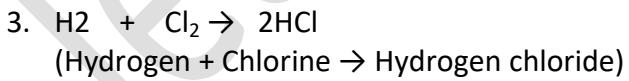
A **combination reaction** is a chemical reaction in which **two or more substances** (elements or compounds) **combine to form a single product**.


These reactions are usually **exothermic**, i.e., they **release heat**.

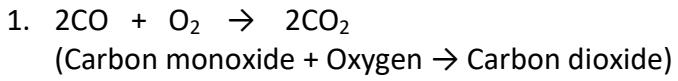
Types of Combination Reactions:

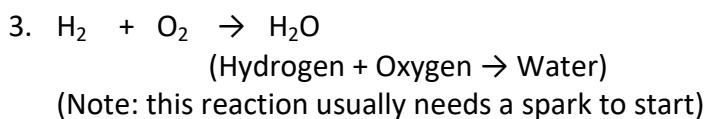

Element + Element \rightarrow Compound

In this type, **two elements combine to form a compound**.


Examples:

(Magnesium + Oxygen \rightarrow Magnesium oxide)


(Sulphur + Oxygen \rightarrow Sulphur dioxide)




Element + Compound \rightarrow New Compound

In this type, an **element combines with a compound to form a new compound**.

Examples:

Compound + Compound → New Compound

In this type, **two compounds react to form a new compound**.

Examples:

1. $CaO + H_2O \rightarrow Ca(OH)_2$
(Quick lime + Water → Slaked lime)
2. $SO_3 + H_2O \rightarrow H_2SO_4$
(Sulphur trioxide + Water → Sulphuric acid)
3. $NH_3 + HCl \rightarrow NH_4Cl$
(Ammonia + Hydrochloric acid → Ammonium chloride)

Key Features of Combination Reactions:

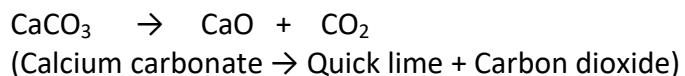
- Always **form one product**.
- Mostly **exothermic** (release heat).
- Can involve **elements or compounds** as reactants.

2. Decomposition Reaction

A **Decomposition Reaction** is a type of chemical reaction in which a **single compound breaks down into two or more simpler substances** (elements or compounds), usually with the help of **heat, light, or electricity**.

General form: $AB \rightarrow A + B$

Decomposition reactions are usually **endothermic**, meaning they **absorb energy** to proceed.


Types of Decomposition Reactions

Thermal Decomposition Reaction

(Decomposition by heat)

In this type, a compound **decomposes on heating** to form simpler products.

Examples:

2. $2\text{Pb}(\text{NO}_3)_2 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$
(Lead nitrate \rightarrow Lead oxide + Nitrogen dioxide + Oxygen)
3. $\text{FeSO}_4 \rightarrow \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{SO}_3$
(Ferrous sulphate \rightarrow Ferric oxide + Sulphur dioxide + Sulphur trioxide)

Photolytic Decomposition Reaction

(Decomposition by light)

In this type, a compound **breaks down in the presence of sunlight**.

Examples:

1. $2\text{AgCl} \rightarrow 2\text{Ag} + \text{Cl}_2$
(Silver chloride \rightarrow Silver + Chlorine)
Turns grey in sunlight (used in photography)
2. $2\text{AgBr} \rightarrow 2\text{Ag} + \text{Br}_2$
(Silver bromide \rightarrow Silver + Bromine)

Electrolytic Decomposition Reaction

(Decomposition by electricity)

In this type, a compound **decomposes when electric current is passed through it**.

Examples:

1. **Electrolysis of Water**
$$2\text{H}_2\text{O}(\text{l}) \rightarrow 2\text{H}_2(\text{g}) + \text{O}_2(\text{g})$$

(Water \rightarrow Hydrogen + Oxygen)
2. $2\text{NaCl}(\text{l}) \rightarrow 2\text{Na}(\text{s}) + \text{Cl}_2(\text{g})$
(Molten sodium chloride \rightarrow Sodium + Chlorine)

3. Displacement Reaction

A displacement reaction is a type of chemical reaction in which **a more reactive element displaces a less reactive element from its salt solution or compound**.

General Form: $A + BC \rightarrow AC + B$
(where A is more reactive than B)

Types of Displacement Reaction:

a) Metal Displacement Reaction:

A more reactive metal displaces a less reactive metal from its salt solution.

Examples:

1. $Fe + CuSO_4 \rightarrow FeSO_4 + Cu$
(Iron displaces copper from copper sulphate)
2. $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$
(Zinc displaces copper)
3. $Al + Fe_2O_3 \rightarrow Al_2O_3 + Fe$
(Aluminium displaces iron from iron oxide – *Thermite reaction*)

(b) Non-metal Displacement Reaction:

A more reactive non-metal (like chlorine) displaces a less reactive non-metal (like bromine or iodine) from its salt solution.

Examples:

1. $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$
(Chlorine displaces bromine from potassium bromide)
2. $Cl_2 + 2KI \rightarrow 2KCl + I_2$
(Chlorine displaces iodine)
3. $Br_2 + 2KI \rightarrow 2KBr + I_2$
(Bromine displaces iodine)

(c) Displacement in Acid Reactions:

Metals can displace hydrogen from acids.

Examples:

1. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2 \uparrow$
2. $Fe + 2HCl \rightarrow FeCl_2 + H_2 \uparrow$
3. $Mg + 2HCl \rightarrow MgCl_2 + H_2 \uparrow$

Note:

- Reactivity series helps to predict displacement reactions.
- **No displacement** occurs if the reacting element is **less reactive** than the one in the compound.
- Displacement reactions are often **exothermic** in nature.

Reactivity Series (Most Reactive to Least Reactive):

Potassium (K)

Sodium (Na)

Calcium (Ca)

Magnesium (Mg)

Aluminium (Al)

Zinc (Zn)

Iron (Fe)

Lead (Pb)

(Hydrogen - non-metal, used for comparison)

Copper (Cu)

Mercury (Hg)

Silver (Ag)

Gold (Au)

Platinum (Pt)

Reactivity Series of Non-Metals

Like metals, **non-metals** also have different reactivities. The **reactivity series of non-metals** is a list of **non-metals arranged in decreasing order of their tendency to gain electrons (i.e., oxidizing power)**.

Reactivity Series of Common Non-Metals (Most Reactive to Least Reactive):

Fluorine (F_2)

Chlorine (Cl_2)

Bromine (Br_2)

Iodine (I_2)

Sulphur (S)

Phosphorus (P)

Carbon (C)

Hydrogen (H)

Explanation:

- **Halogens (F_2 , Cl_2 , Br_2 , I_2)** are the most reactive non-metals because they have **7 electrons in their outermost shell** and readily gain 1 electron to become stable.
- The reactivity **decreases down the group** in halogens.
- **Fluorine** is the most reactive non-metal.
- **Chlorine** can displace bromine and iodine from their salt solutions.

Examples of Displacement by Non-Metals:

1. $Cl_2 + 2KBr \rightarrow 2KCl + Br_2$
(Chlorine displaces bromine from potassium bromide.)
2. $Cl_2 + 2KI \rightarrow 2KCl + I_2$
(Chlorine displaces iodine from potassium iodide.)
3. $Br_2 + 2KI \rightarrow 2KBr + I_2$
(Bromine displaces iodine from potassium iodide.)

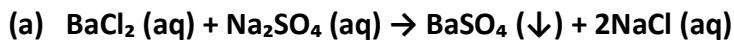
Note:

The reactivity of non-metals is **not as widely extended** as that of metals in the Class 10 syllabus. The **focus is mostly on halogens and oxidizing nature**.

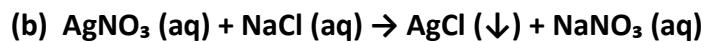
Double Displacement Reaction

A **double displacement reaction** is a chemical reaction in which **two compounds react by exchanging ions or radicals** to form two new compounds.

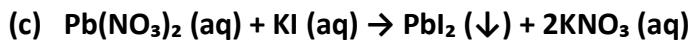
General form: $AB + CD \rightarrow AD + CB$

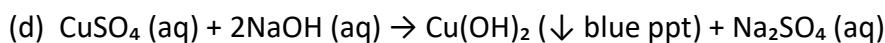

Here, positive ions (A and C) and negative ions (B and D) of two reactants are exchanged.

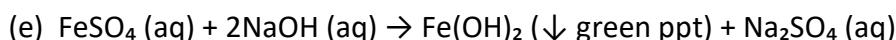
Types of Double Displacement Reactions:


Precipitation Reaction

- When two aqueous solutions react and an **insoluble solid (precipitate)** is formed.

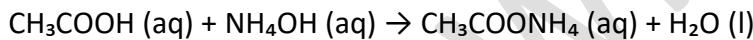
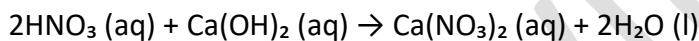
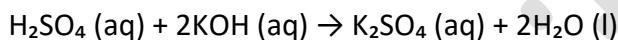
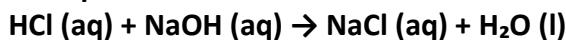

Example:


White precipitate of **Barium sulphate** is formed.


White precipitate of **Silver chloride**.

Yellow precipitate of **Lead(II) iodide**.

Copper(II) hydroxide (**Cu(OH)₂**) forms a **blue precipitate**.

Ferrous hydroxide (**Fe(OH)₂**) forms a **green precipitate**.

Neutralization Reaction

- When an **acid reacts with a base** to form **salt and water**.

Example:

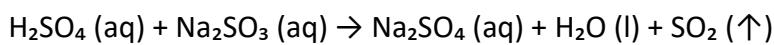
Gas Formation Reaction

- When one of the products is a **gas** that escapes from the reaction mixture.

Example:

Carbon dioxide gas is released.

Gas formed: Carbon dioxide (CO_2)


Observation: Effervescence (bubbling) due to gas evolution

Gas formed: Carbon dioxide (CO_2)

Observation: Brisk effervescence

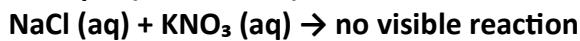
Colour: All reactants and products are colourless except CaCO_3 (white solid)

Gas formed: Sulphur dioxide (SO_2) — pungent smelling

Observation: Colorless gas with sharp choking smell

Conditions for Double Displacement to Occur:

At least one of the following must happen after ion exchange:


1. Formation of **precipitate**
2. Formation of **gas**
3. Formation of **weakly ionized compound** (like water in neutralization)

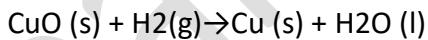
When Double Displacement Will NOT Occur:

Double displacement reactions will **not** occur if:

1. **Both products are soluble salts** and remain in solution → no visible change
2. **No precipitate, gas, or water** is formed → no driving force

Example (no reaction):

All ions stay dissolved – **no precipitate, no gas, no water**


Redox Reaction (Oxidation and Reduction)

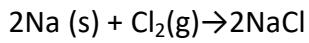
A chemical reaction in which **oxidation** and **reduction** occur **simultaneously** is called a **Redox Reaction**.

- **Oxidation** is the **loss of electrons** or **addition of oxygen** or **removal of hydrogen**.
- **Reduction** is the **gain of electrons** or **removal of oxygen** or **addition of hydrogen**.

Examples of Redox Reactions:

Example 1:

- **Oxidation:** $\text{H}_2 \rightarrow \text{H}_2\text{O}$ (Hydrogen is oxidized – gains oxygen)
- **Reduction:** $\text{CuO} \rightarrow \text{Cu}$ (Copper oxide is reduced – loses oxygen)


Redox Reaction because oxidation and reduction occur simultaneously.

Example 2:

- Cu^{2+} is **reduced** to Cu (gains electrons)

Example 3:

Na is **oxidized** (loses electrons to form Na^+)

Cl₂ is **reduced** (gains electrons to form Cl^-)

Oxidizing Agent and Reducing Agent:

Oxidizing Agent (Oxidant):

- The substance which **causes oxidation** (i.e., gains electrons or provides oxygen).
- It **gets reduced** in the process.

Example: In $\text{CuO} + \text{H}_2 \rightarrow \text{Cu} + \text{H}_2\text{O}$,

CuO is the **oxidizing agent** (gives oxygen to H_2 and gets reduced).

Reducing Agent (Reductant):

- The substance which **causes reduction** (i.e., loses electrons or removes oxygen).
- It **gets oxidized** in the process.

Example: In the same reaction,

H₂ is the **reducing agent** (removes oxygen from CuO and gets oxidized to H_2O).

Some Common Redox Reactions

1. **Thermite Reaction:** $\text{Fe}_2\text{O}_3 + 2\text{Al} \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3$

Fe₂O₃ is reduced & **Al** is oxidized

2. **Reaction of Magnesium with HCl:** $\text{Mg} + 2\text{HCl} \rightarrow \text{MgCl}_2 + \text{H}_2$

Mg is oxidized to Mg^{2+} & H^+ is reduced to H_2

3. **Burning of Carbon:** $\text{C} + \text{O}_2 \rightarrow \text{CO}_2$

Carbon is oxidized (gains oxygen)

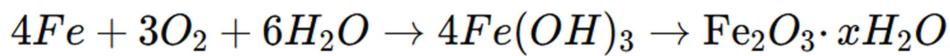
4. $2\text{Pb}(\text{NO}_3)_2 \xrightarrow{\text{Heat}} 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$

Lead nitrate on heating decomposes to give:

Lead oxide (PbO) – yellow solid

Nitrogen dioxide (NO₂) – brown gas

Oxygen (O₂) – colorless gas


This reaction is **both thermal decomposition** and **redox**.

6. Corrosion

Corrosion is the slow destruction of metals due to their reaction with substances present in the environment like oxygen, water, acids, etc.

Example:

Iron (Fe) reacts with **oxygen (O₂)** and **moisture (H₂O)** in the air to form **hydrated iron(III) oxide**, commonly called **rust**.

This reddish-brown flaky substance is **rust**.

Effects of Corrosion:

- Iron articles weaken and break.
- Bridges, vehicles, iron railings, etc., become structurally unsafe.
- Wastage of resources and money.

Prevention of Corrosion:

Method	Description
Galvanization	Coating iron with zinc
Painting	Applying paint to form a protective layer
Oiling/Greasing	Prevents moisture contact with metal
Alloying	Making alloys like stainless steel
Electroplating	Coating with another metal like chromium

7. Rancidity

Rancidity is the condition produced by the oxidation of fats and oils in food materials that results in a bad taste and smell.

Examples of Rancidity:

- Chips kept in open air for a long time develop a bad smell.

- Ghee or oil left outside gets spoiled and smells unpleasant.
- Old butter smelling sour.

Prevention of Rancidity:

Method	Explanation
Refrigeration	Slows down oxidation by keeping food in cool environment
Airtight containers	Limits contact with oxygen
Adding antioxidants	Substances like BHA (Butylated hydroxyanisole) & BHT delay oxidation
Vacuum Packing	Removing air from packaging
Flushing with Nitrogen	Chips packets are filled with Nitrogen gas to prevent rancidity